Publication

Selected publications

2024

Laticifers – among the most common defensive reservoirs in plants – are hypothesized to benefit plant fitness by preventing microbes from entering wounds. I argue that while latex seals wounds, and can suppress microbial growth, direct evidence that these processes benefit plant fitness is scarce. I outline a roadmap for filling this knowledge gap.

Latex – a potential plant defense against microbes (cell.com)

 

2023

  • Laticifers are hypothesized to mediate both plant‐herbivore and plant‐microbe interactions. However, there is little evidence for this dual function.
  • We investigated whether the major constituent of natural rubber, cis‐1,4‐polyisoprene, a phylogenetically widespread and economically important latex polymer, alters plant resistance and the root microbiome of the Russian dandelion (Taraxacum koksaghyz) under attack of a root herbivore, the larva of the May cockchafer (Melolontha melolontha).
  • Rubber‐depleted transgenic plants lost more shoot and root biomass upon herbivory than normal rubber content near‐isogenic lines. M. melolontha preferred to feed on artificial diet supplemented with rubber‐depleted rather than normal rubber content latex. Likewise, adding purified cis‐1,4‐polyisoprene in ecologically relevant concentrations to diet deterred larval feeding and reduced larval weight gain. Metagenomics …

 

Natural rubber reduces herbivory and alters the microbiome below ground (wiley.com)

 

2021

Gut enzymes can metabolize plant defense compounds and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We have demonstrated that TA-G is rapidly deglucosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglucosylation. Using cross-species RNA interference, we have shown that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G-deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense compound. Our work illustrates the multifaceted roles of insect digestive enzymes as mediators of plant-herbivore interactions.

 

A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite

Although non-genetic inheritance is thought to play an important role in plant ecology and evolution, evidence for adaptive transgenerational plasticity is scarce. Here, we investigated the consequences of copper excess on offspring defences and fitness under recurring stress in the duckweed Spirodela polyrhiza across multiple asexual generations. Growing large monoclonal populations (greater than 10 000 individuals) for 30 generations under copper excess had negative fitness effects after short and no fitness effect after prolonged growth under recurring stress. These time-dependent growth rates were likely influenced by environment-induced transgenerational responses, as propagating plants as single descendants for 2 to 10 generations under copper excess had positive, negative or neutral effects on offspring fitness depending on the interval between initial and recurring stress (5 to 15 generations). Fitness benefits under recurring stress were independent of flavonoid accumulations, which in turn were associated with altered plant copper concentrations. Copper excess modified offspring fitness under recurring stress in a genotype-specific manner, and increasing the interval between initial and recurring stress reversed these genotype-specific fitness effects. Taken together, these data demonstrate time- and genotype-dependent adaptive and non-adaptive transgenerational responses under recurring stress, which suggests that non-genetic inheritance alters the evolutionary trajectory of clonal plant lineages in fluctuating environments.

 

Transgenerational non-genetic inheritance has fitness costs and benefits under recurring stress in the clonal duckweed Spirodela polyrhiza

 

2019

Mutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. Here we investigate genetic diversity, spontaneous mutation rate and Ne in the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals reveals extremely low intraspecific genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereas Ne is large. These results demonstrate that low genetic diversity can be associated with large-Ne species, where selection can reduce mutation rates to very low levels. This study also highlights that accurate estimates of mutation rate can help to explain seemingly unexpected patterns of genome-wide variation.

 

Low genetic variation is associated with low mutation rate in the giant duckweed

 

2016

Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

 

Low genetic variation is associated with low mutation rate in the giant duckweedA latex metabolite benefits plant fitness under root herbivore attack

 

The complete publication list can be found here:

https://scholar.google.com/citations?user=LqEdsAIAAAAJ&hl=en